Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 1, 2026
-
Abstract Galaxy formation models within cosmological hydrodynamical simulations contain numerous parameters with nontrivial influences over the resulting properties of simulated cosmic structures and galaxy populations. It is computationally challenging to sample these high dimensional parameter spaces with simulations, in particular for halos in the high-mass end of the mass function. In this work, we develop a novel sampling and reduced variance regression method,CARPoolGP, which leverages built-in correlations between samples in different locations of high dimensional parameter spaces to provide an efficient way to explore parameter space and generate low-variance emulations of summary statistics. We use this method to extend the Cosmology and Astrophysics with machinE Learning Simulations to include a set of 768 zoom-in simulations of halos in the mass range of 1013–1014.5M⊙h−1that span a 28-dimensional parameter space in the IllustrisTNG model. With these simulations and the CARPoolGP emulation method, we explore parameter trends in the ComptonY–M, black hole mass–halo mass, and metallicity–mass relations, as well as thermodynamic profiles and quenched fractions of satellite galaxies. We use these emulations to provide a physical picture of the complex interplay between supernova and active galactic nuclei feedback. We then use emulations of theY–Mrelation of massive halos to perform Fisher forecasts on astrophysical parameters for future Sunyaev–Zeldovich observations and find a significant improvement in forecasted constraints. We publicly release both the simulation suite and CARPoolGP software package.more » « less
-
Abstract We introduce a novel geometry-informed irreversible perturbation that accelerates convergence of the Langevin algorithm for Bayesian computation. It is well documented that there exist perturbations to the Langevin dynamics that preserve its invariant measure while accelerating its convergence. Irreversible perturbations and reversible perturbations (such as Riemannian manifold Langevin dynamics (RMLD)) have separately been shown to improve the performance of Langevin samplers. We consider these two perturbations simultaneously by presenting a novel form of irreversible perturbation for RMLD that is informed by the underlying geometry. Through numerical examples, we show that this new irreversible perturbation can improve estimation performance over irreversible perturbations that do not take the geometry into account. Moreover we demonstrate that irreversible perturbations generally can be implemented in conjunction with the stochastic gradient version of the Langevin algorithm. Lastly, while continuous-time irreversible perturbations cannot impair the performance of a Langevin estimator, the situation can sometimes be more complicated when discretization is considered. To this end, we describe a discrete-time example in which irreversibility increases both the bias and variance of the resulting estimator.more » « less
An official website of the United States government

Full Text Available